ENDOGENOUS CARBON MONOXIDE PRODUCTION IN ALLOXANIZED RATS

BY
Takehito TAKANO, Keiko HONMA and Hiroshi MAEDA*1

ABSTRACT

The endogenous production of carbon monoxide (Vco) in thirty-three diabetic rats induced by alloxan and in fifteen normal rats was measured by serial determinations of the expired carbon monoxide and of the increase of carbon monoxide in the blood during rebreathing in a closed system.

Vco (mean ± S.E., μl/250g/hr) in the group of alloxanized rats 24, 48, 72, 96, 120 and over 144 hours after the alloxan injection was 6.2 ± 2.9, 8.4 ± 2.1, 9.2 ± 1.8, 10.7 ± 3.5, 16.4 ± 2.0 and 16.3 ± 2.2, respectively, whereas it was 5.9 ± 0.4 for the control.

This indicates that the alloxanized group maintaining a high blood sugar level for over 120 hours has a three-fold higher Vco than the control.

INTRODUCTION

In the late 1940's, it was shown by Sjöstrand17 that carbon monoxide (CO) is produced endogenously in the normal adult during heme catabolism.

Concerning the various conditions of heme degradation (Lynch et al.2, Mercke et al.3), effects of several substances on heme dynamics (Lundh et al.4, Landaw et al.5) and the disorders of hematopoietic system (Coburn et al.6, Maisels et al.7), numerous studies have been done to date, and the methods of accurately measuring the CO production in vivo have been developed (Coburn et al.8,9, Ostrander et al.10). But, there are no studies about Vco in metabolic disorders.

On the other hand, it has been reported that the blood carboxyhemoglobin (COHb) percent concentration ([COHb]%) was increased in the patients with diabetes mellitus (Belli et al.11, Crosetti et al.12, Giubileo et al.13) and a similar result was confirmed by our study (Takano et al.14). However, it is entirely unknown whether the origin of the increased CO in the blood is due to the endogenous production or exogenous absorption.

The aim of this preliminary report is to estimate the Vco in the alloxanized rats and compare it with that in the normal rats.

METHODS

Thirty-three male Wistar rats weighing about 250 g treated with alloxan (300 mg/kg, i.p.) and fifteen male animals also treated with 0.9% NaCl as the control were subjected to the experiment.

Fig. 1 is a schematic illustration of the closed rebreathing apparatus, in which the rat is isolated from the environmental air and made to breathe for several hours. The capacity of the circuit was 1.4 l and it was

*1 高野健吾，本間義子，前田 哲：Department of Public Health (Chief: Prof. H. MAEDA), School of Medicine, Tokyo Medical and Dental University (Tokyo Ika Shika Daigaku).

Received for publication, November 11, 1976.
Fig. 1. Schematic Illustration of a Closed Rebreathing Apparatus

filled with oxygen and nitrogen by an air bag to keep the gas volume in the circuit constant.

The experimental procedure was as follows: The rat was put in the apparatus, and after an equilibration period of 20 minutes in the rebreathing system gas samples (11) were drawn every 2 hours. The duration of rebreathing time varied from 2 to 8 hours. Blood CO levels before the rebreathing experiments were estimated from the two additional groups of rats under corresponding conditions.

Vco was approximated by the sum of the excreted pulmonary CO and the increased CO in the blood. The expired CO was collected in the air bag and measured by a nondispersive infrared gas analyzer. The evaluation of the CO volume percent in the blood was performed according to the method of Lawther and Aptorp15.

Blood sugar was measured according to the method of Hyvärinen and Nikkilä16.

Results

Fig. 2 shows the relation of Vco and the time course after the alloxan injection. Vco (mean ± S.E., μl/250/hr, at 0°C, and 0% R.H. of the atmosphere) in the group of alloxanized rats 24, 48, 72, 96, 120 and over 144 hours after the injection was 6.2 ± 2.9, 8.4 ± 2.1, 9.2 ± 1.8, 10.7 ± 3.5, 16.4 ± 2.0 and 16.5 ± 2.2, respectively, whereas it was 5.9 ± 0.4 for the control.

As can be seen in Fig. 3, the alloxanized group maintaining a high blood sugar level

Table 1. Endogenous Carbon Monoxide Production (Vco) and Time Course After Alloxan Injection

<table>
<thead>
<tr>
<th>Rebreathing hours</th>
<th>Vco μl/250 g Body Weight</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Alloxanized</td>
</tr>
<tr>
<td>2</td>
<td>11.9±0.7</td>
<td>33.2±4.2</td>
</tr>
<tr>
<td>4</td>
<td>20.3±2.1</td>
<td>61.4±9.9</td>
</tr>
<tr>
<td>6</td>
<td>36.0±4.1</td>
<td>89.9±13.7</td>
</tr>
</tbody>
</table>
for over 120 hours showed a significantly higher Vco than the control (p<0.01). Detailed figures are shown in Table 1.

As shown in Fig. 4, in both the normal and alloxanized groups, the blood CO level (mean ± S.E., μl/10ml) increased significantly by the maintenance of rebreathing, that is 4.9 ± 0.3 at 0 hour and 5.4 ± 0.4 at 4 hours after rebreathing for the control and 7.1 ± 0.4 at 0 hour and 7.9 ± 0.3 at 4 hours after rebreathing for the alloxanized group.

The blood sugar level (mean ± S.E., mg/dl) at the end of rebreathing was 455.5 ± 34.8 (ranging from 298.3 to 665.0) in the alloxanized group and 111.1 ± 2.8 in the control group. However, there was no significant correlation between the blood sugar and Vco levels.

Discussion

It was indicated in the present study that Vco is increased in the alloxanized rats compared with the normal rats.

According to the established theory that endogenous CO originates not from the other substances but from the alpha bridge carbon atom of heme (Coburn et al.171), it could be said that a certain acceleration of heme catabolism seems to occur in the diabetic rats induced by alloxan.

However, considering the fact that the alpha bridge carbon atom forms formyl once during heme degradation (Nakajima et al.18), and the publication reporting that L-dopa produces CO in the biological enzymatic reaction to melanin in vitro (Miyahara et al.19), it could be implied that there are some possibilities that, there are other
metabolic pathways which produce CO in a diabetic body.

The question as to whether [COHb]% in alloxanized rats with a high Vco could reach levels associated with CO toxicity has not been completely answered. Nevertheless, there are too many places with a considerably high CO concentration because of environmental pollution, and, in addition, aortic intimal injury and/or ultrastructural myocardial damage have been found under hypoxia due to the exposure to a rather low level of CO in rabbits (Thomsen et al.,20, Kjeldsen et al.,21). Accordingly, patients who produce endogenous CO excessively and cannot excrete this harmful waste substance promptly seem to suffer from a high risk of cardiovascular diseases due to both external and internal environmental conditions.

Acknowledgement

We are deeply grateful to Prof. H. Nakajima (Department of Genetics and Biochemistry, Tokyo Medical and Dental University) for his valuable and kind advice. We wish to express our deep gratitude to Dr. M. Asano (Department of Physiology and Hygiene, The Institute of Public Health) for his valuable and kind help in preparing the manuscript. We are also indebted to Dr. T. Sawa (Department of Anesthesiology, Tokyo Medical and Dental University) for his valuable suggestions regarding the apparatus.

References

