Original Article

Relationship between Oral Malodor and Glycosylated Salivary Proteins

Sachiko Takehara¹, Masaki Yanagishita², Katarzyna Anna Podyma-Inoue², Masayuki Ueno¹, Kayoko Shinada¹ and Yoko Kawaguchi¹

¹) Section of Oral Health Promotion, Department of International Health Development, Division of Public Health.
²) Section of Biochemistry, Department of Hard Tissue Engineering, Division of Bio-Matrix, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.

Volatile sulfur compounds (VSCs), which are major sources of oral malodor, are produced by putrefactive activities of bacteria. Saliva provides easily degradable protein substrates, and most proteins are glycosylated. We hypothesized that oral malodor would be associated with enhanced proteolysis or deglycosylation in saliva. The purpose of this study was to evaluate properties of glycoproteins in saliva and assess their association with VSC levels. Subjects were 88 patients who visited "the Fresh Breath Clinic", Dental Hospital, Tokyo Medical and Dental University. They were classified into malodor (n = 67) and non-malodor (n = 21) groups. After collecting saliva, the amounts of the total proteins and carbohydrate were determined. Molecular size distributions of salivary proteins/glycoproteins were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The amount of the total salivary proteins was significantly higher in the malodor group. Major proteins/glycoproteins observed in SDS-PAGE analyses showed similar distributions between the two groups. In the malodor group, the salivary protein concentrations were positively correlated with the CH₃SH levels (p < 0.05), and the carbohydrate contents were negatively correlated with the H₂S levels (p < 0.05). These results indicated the possibility that salivary proteins/glycoproteins might be related to the malodor generation.

Key words: oral malodor, volatile sulfur compounds, resting whole saliva, glycoprotein, SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Introduction

Oral malodor or bad breath is now a concern of millions of people¹. The oral cavity is the origin of malodor in nearly 90% of cases², although there are some extra oral causes of malodor. Oral malodor is closely associated with disorders such as periodontal diseases, poor oral hygiene, tongue coating, dry mouth, dental caries, oral carcinoma, and several forms of stomatitis.

Metabolic products of anaerobic bacteria within the oral cavity are the major causes of oral malodor. They degrade sulfur-containing amino acids such as cysteine and methionine into the foul smelling volatile sulfur compounds (VSCs), namely hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), and dimethyl sulfide ((CH₃)₂S). VSCs are mainly produced through the putrefactive activities of bacteria in saliva, in the gingival crevice, and on the tongue surface³. Saliva is mixed together with bacteria and shed epithelial cells⁴. Therefore, incubation of whole saliva in vitro at body temperature can result in the generation of a malodor similar to the VSCs of mouth air⁵.

Most of the salivary proteins available in the oral cavity are glycoproteins, whose carbohydrate components could generally interfere with their proteolysis⁶. Therefore, removal of carbohydrate side chains might make them more susceptible to proteolysis⁷. Cleavage of the carbohydrate side chains is catalyzed by a series of glycosidic enzymes, whose
types and activities vary depending on bacterial species and some of their activities are reported to be correlated with oral malodor. We hypothesized that deglycosylation of salivary glycoproteins accelerates the generation of VSCs, and accordingly degraded or reduced amounts of glycoproteins may be observed in the saliva of patients with oral malodor. The purpose of this study was to evaluate properties of glycoproteins in saliva and assess their association with VSC levels.

Materials and Methods

Subjects
Subjects were sequentially selected from 385 patients who visited "the Fresh Breath Clinic", Dental Hospital, Tokyo Medical and Dental University from June, 2007 to March, 2008. Subjects who were on medication or had been diagnosed as having any systemic disease were excluded. Furthermore, those with salivary flow rate lower than approximately 0.06 mL/min were excluded in order to ensure sufficient amount of saliva for completing biochemical analyses. Finally, 88 subjects (33 males and 55 females) were selected. The study protocol was approved by the Ethics Committee for Human Research, Tokyo Medical and Dental University (No. 270), and subjects enrolled in the study received verbal and written information about the study, and signed an informed consent form.

Assessment of oral malodor
Subjects were asked to follow pre-assessment instructions before the oral malodor assessment in order to avoid confounding odors and to maximize oral VSC levels. The measurement was conducted between 9:00 and 11:00 AM. Subjects were instructed to close their mouths for 3 minutes in an upright chair position prior to each assessment and breathe through their nose during the measurements.

Organoleptic test (OT)
The OT score was determined by two trained dentists. They were trained to describe malodor by referring to an odor solution kit for measuring the olfactory sense (T&T Olfactometer, Daich Yakuhin Sangyo Co., Tokyo, Japan)9. Judges subjectively rated the strength of the odor on a scale of 0 to 5 based on Rosenberg’s criteria10. If the two judges gave different scores, a mean score was used as the representative score for that subject.

Gas chromatography (GC)
The GC analysis of mouth air was carried out using a GC-8A gas chromatograph (Shimadzu, Kyoto, Japan) equipped with a flame photometric detector. The chromatographic conditions followed the criteria described previously11. The Teflon tube connected to the auto-injector was inserted into the center of the oral cavity between the lips and teeth while the mouth remained closed. Following aspiration of 10 mL of mouth air with a syringe connected to the outlet of the auto-injector, the sample air was transferred to the column and chromatographed. Results were shown as the concentrations (ng/10 mL) of H2S, CH3SH, and (CH3)2S.

Oral examination
Dental status including teeth present and decayed teeth of the subjects was recorded. Periodontal status was evaluated by exploring all gingival margins of each tooth with a manual periodontal probe, PCP UNC15 Hu-Friedy (Hu-Friedy Mfg. Co., Inc., Illinois, USA), and the deepest pocket depth was recorded. The numbers of periodontal pockets 4 mm or greater and 6 mm or greater were counted. Gingival bleeding was assessed by recording the presence of bleeding sites of the tooth after periodontal probing. The percentage of teeth with bleeding sites was calculated. Oral hygiene of six selected teeth was assessed using the plaque index of Silness and Loe12. The average score of the four surfaces of the selected teeth was calculated. The area and the thickness of the tongue coating were determined by visual inspection. They were recorded as a score of 0 to 3 based on the evaluation criteria11,13.

Assessment of saliva

Collection of resting whole saliva
Before the oral examination, resting whole saliva samples were collected. Saliva was collected for 5 minutes into a pre-weighed paper cup and re-weighed. Saliva samples were frozen and stored at −80°C until protein analyses.

Quantification of total salivary proteins and carbohydrate content
Saliva samples were clarified by centrifugation at 600 x g for 10 minutes at 4°C. The amount of total proteins in saliva was determined spectrophotometrically at 562 nm with a BCA Protein Assay Kit (Pierce Biotechnology, Inc., Rockford, Illinois, USA). Carbohydrate content in salivary glycosylated proteins
Oro-Malodor and Glycosylated Salivary Proteins

Oral Malodor and Glycosylated Salivary Proteins

was determined spectrophotometrically at 550 nm with a Glycoprotein Carbohydrate Estimation Kit (Pierce Biotechnology, Inc., Illinois, USA).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

Each sample was reconstituted in two protein concentrations (10 µg/15 µL and 50 µg/10 µL) in sodium dodecyl sulfate (SDS) sample buffer and subjected to SDS-polyacrylamide gradient (4-20%) gel (Daiichi Pure Chemicals Co., Ltd., Tokyo, Japan) electrophoresis (SDS-PAGE) according to the Laemmli method. Molecular weight standards (Bio-Rad Laboratories, Inc., Hercules, California, USA) were used in all electrophoresis. After the electrophoresis, one gel (samples with 10 µg/15 µL protein concentration) was stained for proteins using GelCode Blue (Pierce Biotechnology, Inc., Illinois, USA) and the other (samples with 50 µg/10 µL protein concentration) for glycosylated proteins by GelCode Glycoprotein Staining Kit (Pierce Biotechnology, Inc., Illinois, USA). After staining, gels were scanned with a color image scanner (Seiko Epson Corporation, Nagano, Japan), and digital image analyses were done with the Scion Image Program (Scion Corporation, Frederick, Maryland, USA). The program provided the band densities in 256 gray scale values.

Statistical analysis

Based on the olfactory threshold levels ($H_2S \geq 1.5$ ng, $CH_3SH \geq 0.5$ ng, and $(CH_3)_2S \geq 0.3$ ng in 10 mL of mouth air) and OT scores (score ≥ 2), subjects were classified into the malodor and non-malodor groups. The malodor group consisted of subjects whose VSC levels surpassed one or more of the threshold criteria or the OT score was 2 or greater. Chi-square test was used to analyze any difference between the distributions of male/female to the malodor/non-malodor groups. Inter-evaluator variation for OT scores between two judges was assessed by Cohen's kappa statistics. The Mann-Whitney U test was used to analyze the difference of tongue coating (area and thickness) and the plaque index between the two groups. Student's t-test was used for the analyses of the mean differences of other results. Pearson correlation coefficients were used to explore the association between amounts of salivary proteins vs. carbohydrates, amounts of salivary proteins vs. VSC levels, and carbohydrate contents vs. VSC levels. Because of the non-normal distribution of VSCs, the amounts of proteins, and carbohydrate contents, logarithmic transformation was applied to these values before the calculation of the t-test and correlation coefficients. The distributions of those values after logarithmic transformation were diagnosed as normal with the Kolmogorov-Smirnov test. Data were analyzed using the Statistical Package for Social Science (version 11, Tokyo, Japan). P values less than 0.05 were considered statistically significant.

Results

Clinical characteristics of the subjects

Among the 88 subjects, 67 were classified into the malodor group (26 males and 41 females) and the others into the non-malodor group (7 males and 14 females). Differences of the average age and the male/female ratio of the two groups were negligible. Cohen's kappa statistics value, between the two dentists for the OT score, was 0.62.

The average VSC (H_2S, CH_3SH, and $(CH_3)_2S$) levels and OT scores are shown in Table 1. Table 2 indicates average oral conditions of the subjects. In malodor group, the results were higher in the number of decayed teeth ($p < 0.05$), the plaque index ($p < 0.05$), and tongue coating (area, $p < 0.001$; thickness, $p < 0.001$). No statistically significant difference was found in the number of teeth present and periodontal conditions between the two groups.

Results of salivary analyses

In the malodor group, flow rate of saliva and the concentration of salivary proteins were higher than those of the non-malodor group ($p < 0.001$, $p < 0.05$, respectively) (Table 3). Carbohydrate contents in saliva (mg/mL), in salivary proteins (mg/mg protein), flow rate of carbohydrates (mg/min) were 0.28 ± 0.02 (mean ± SEM), 0.16 ± 0.00, and 0.07 ± 0.01 in the malodor group, and 0.22 ± 0.03, 0.15 ± 0.00, and 0.09 ± 0.01 in the non-malodor group, respectively. No statistically significant difference was found in the number of teeth present and periodontal conditions between the two groups.
Table 1. Results of oral malodor assessment
Subjects were classified into the malodor group when the VSC levels by GC surpassed one or more of the threshold criteria or the OT score was 2 or greater.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Malodor (n = 67) mean ± SD</th>
<th>Non-malodor (n = 21) mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>42.3 ± 11.8</td>
<td>39.0 ± 11.1</td>
<td>0.249</td>
</tr>
<tr>
<td>Gas chromatography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S (ng/10 mL)</td>
<td>6.7 ± 7.3</td>
<td>0.8 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>CH₃SH (ng/10 mL)</td>
<td>2.9 ± 4.7</td>
<td>0.2 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>(CH₃)₂S (ng/10 mL)</td>
<td>0.6 ± 0.5</td>
<td>0.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Organoleptic test score</td>
<td>2.0 ± 0.6</td>
<td>1.2 ± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Clinical characteristics of the malodor and non-malodor groups
Subjects were classified into the malodor group when the VSC levels by GC surpassed one or more of the threshold criteria or the OT score was 2 or greater.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Malodor (n = 67) mean ± SD</th>
<th>Non-malodor (n = 21) mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>42.3 ± 11.8</td>
<td>39.0 ± 11.1</td>
<td>0.249</td>
</tr>
<tr>
<td>Oral conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of teeth present</td>
<td>26.7 ± 1.8</td>
<td>26.0 ± 2.5</td>
<td>0.126</td>
</tr>
<tr>
<td>Number of decayed teeth</td>
<td>0.1 ± 0.4</td>
<td>0.4 ± 0.6</td>
<td>0.017</td>
</tr>
<tr>
<td>Plaque index</td>
<td>0.5 ± 0.4</td>
<td>0.3 ± 0.4</td>
<td>0.021</td>
</tr>
<tr>
<td>Number of teeth with periodontal pockets ≥ 4mm</td>
<td>1.5 ± 2.8</td>
<td>1.3 ± 2.6</td>
<td>0.724</td>
</tr>
<tr>
<td>Number of teeth with periodontal pockets ≥ 6mm</td>
<td>0.2 ± 0.8</td>
<td>0.0 ± 0.0</td>
<td>0.115</td>
</tr>
<tr>
<td>% of teeth with bleeding sites</td>
<td>20.9 ± 18.8</td>
<td>11.8 ± 18.8</td>
<td>0.066</td>
</tr>
<tr>
<td>Area of tongue coating</td>
<td>2.3 ± 0.7</td>
<td>1.6 ± 1.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Thickness of tongue coating</td>
<td>1.8 ± 0.7</td>
<td>1.0 ± 0.6</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Table 3. Results of salivary analyses of the malodor and non-malodor groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Malodor (n = 67) mean ± SEM</th>
<th>Non-malodor (n = 21) mean ± SEM</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saliva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate of saliva (mL/min)</td>
<td>0.30 ± 0.03</td>
<td>0.48 ± 0.07</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Salivary proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration of proteins (mg/mL)</td>
<td>1.89 ± 0.13</td>
<td>1.45 ± 0.16</td>
<td>0.047</td>
</tr>
<tr>
<td>Flow rate of proteins (mg/min)</td>
<td>0.49 ± 0.04</td>
<td>0.60 ± 0.08</td>
<td>0.154</td>
</tr>
<tr>
<td>Salivary glycoproteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrate contents in saliva (mg/mL)</td>
<td>0.28 ± 0.02</td>
<td>0.22 ± 0.03</td>
<td>0.081</td>
</tr>
<tr>
<td>Carbohydrate contents in salivary proteins (mg/mg protein)</td>
<td>0.16 ± 0.00</td>
<td>0.15 ± 0.00</td>
<td>0.712</td>
</tr>
<tr>
<td>Flow rate of carbohydrates (mg/min)</td>
<td>0.07 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>0.172</td>
</tr>
</tbody>
</table>
Oral Malodor and Glycosylated Salivary Proteins

The carbohydrate contents in proteins was also negatively, but not statistically significantly, correlated with \(\text{CH}_3\text{SH} \) (\(r = -0.19 \)) and \((\text{CH}_3\text{S})_2\text{S}\) (\(r = -0.20 \)) levels. These statistically significant correlations were only observed in the malodor group.

Results of SDS-PAGE

A representative SDS-PAGE pattern of salivary proteins identified 9 major bands, and that of salivary glycoproteins identified 7 major bands (Figure 4). Figure 5 shows the differences of mean amount of salivary proteins and carbohydrates in the bands identified by the SDS-PAGE analyses. Protein content in band 5 (apparent molecular weight 56 kDa) was higher in the malodor group (\(p < 0.05 \)) (Fig 4a, 5a). Any statistically significant difference was not observed in carbohydrate contents in bands of glycoproteins (Figure 4b, 5b).

Discussion

Proteins and peptides derived from saliva may have a critical impact as a biomarker in diagnosing oral malodor. If VSCs are generated as a result of bacterial degradation of proteins, their level of degradation, represented by deglycosylation and proteolysis, can be a good marker of oral malodor. The goal of our study was to assess extents of deglycosylation of salivary proteins in generation VSCs. The results indicated that the total carbohydrate contents of salivary glycoproteins were not statistically significantly different between the malodor and non-malodor groups. Furthermore, the amount of carbohydrates increased in accordance with the increase of the amount of proteins irrespective of the presence of malodor. These results suggested little appreciable deglycosylation in the malodor group. However, \(\text{H}_2\text{S} \) levels increased as the carbohydrate contents of salivary glycoproteins decreased in the malodor group, which is compatible with the possibility that deglycosylation facilitated proteolysis, resulting in accelerated \(\text{H}_2\text{S} \) generation. It was reported that activity of a glycosidase, namely that...
of β-galactosidase, was significantly higher in malodor patients16. In order to evaluate the involvement of glycosidases in VSC generation, analysis of β-galactosidase activity alone is not sufficient. There are various kinds of glycosidases including β-galactosidase, sialidase, β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase, and α-fucosidase17. β-Galactosidase is produced by Streptococcus gordonii and Actinomyces naeslundii, not by Porphyromonas gingivalis and Fusobacterium nucleatum17. Sialidase is produced by Streptococcus oralis and Actinomyces naeslundii, not by Fusobacterium nucleatum17. Glycosidases, proteases17 and metabolic status of bacteria can contribute variably to the generation of VSCs. Further studies are required to explore the relationship among glycosidic degradation of glycoproteins, subsequent proteolysis and VSC generation.

The total concentration of salivary proteins, providing substrates for VSC production, was statistically significantly higher in the malodor group. In the malodor group, the association of the total amount of salivary proteins vs. CH\textsubscript{3}SH levels, and reduced salivary flow rate were observed. It was reported that CH\textsubscript{3}SH level is higher in the malodor patients with periodontitis3. In addition, patients with periodontitis show changes in the concentrations of endogenous immune-reactive proteins such as cystatin and secretory IgA, and increased gingival crevicular fluid (GCF) secretion18,19. In this study, periodontal conditions of the subjects evaluated by pocket depth and gingival bleeding were not statistically significantly different. While not statistically significantly different, the mean percentage of teeth with bleeding sites in the malodor group was greater than the non-malodor group. This may indicate that gingival bleeding and the amounts of GCF derived-proteins or immune-reactive proteins might increase in the malodor group, which may result in higher concentrations of salivary proteins. Our finding is compatible with the possibility that salivary proteins can be one of the sources of malodor and accelerate VSC levels. It was reported that decrease in salivary flow could also result in increased protein concentrations20. Lower flow rate of saliva could affect oral conditions by leading to accumulation of debris, plaque and bacteria21, potentially generating an environment to elevate VSCs. The result of this study agrees with findings that reduction in flow rate of saliva can be one of the causes of the VSC production22. More detailed study of their relationships will be necessary in the future research.

The bands detected in protein and glycoprotein stainings of SDS-PAGE were of similar molecular weights and amounts in the malodor and non-malodor
Figure 5: Mean amounts of salivary proteins and carbohydrates in the malodor and non-malodor groups in bands identified by SDS-PAGE. The shadowed gray bar represents the densitometry analyses (mean ± SEM) of proteins and glycoproteins bands in the malodor group. The gray bar represents that of the non-malodor group.

(a) Mean amount of salivary proteins. The amount of proteins in each band was calculated from the density of each band multiplied by the concentration of proteins. Numbers on x-axis correspond to the bands identified in Figure 4a.

(b) Mean amount of carbohydrates in salivary glycoproteins. The amount of carbohydrates in each band was calculated from the density of each band multiplied by the concentration of carbohydrates. Letters on x-axis correspond to the bands identified in Figure 4b.
Degradation of mucins was reported to cause VSCs generation in vitro study26. Sterer et al. reported that deglycosylation facilitated proteolysis of mucins, and resulted in VSC elevation26. The results of the present study did not support Sterer’s findings. We could not clarify if either substantial deglycosylation or proteolysis was involved in VSC generation. More specific analyses focusing on salivary glycoproteins such as MUC5B and MUC7, and metabolic clearance by their degradations are necessary in the future studies.

Saliva is constantly secreted and swallowed, while its amount and compositions are influenced by various factors including food intake, the degree of systemic hydration, and circadian rhythms. In other words, saliva is constantly replaced by newly secreted saliva. If VSCs are generated through degradation of salivary proteins and glycoproteins by various glycosidases and proteolytic enzymes, the degradation of salivary proteins and glycoproteins must take place before saliva is swallowed. Considerable accumulation of proteins, positive correlation between concentrations of proteins vs. CH\textsubscript{3}SH level, and negative correlation between carbohydrate contents vs. H\textsubscript{2}S level in the malodor group were observed, which indicate the possibility that salivary proteins and glycoproteins might be related to the generation of VSCs. This finding is in conflict with the data showing unenhanced proteolysis or deglycosylation. These correlations were only observed in the malodor group, not in the non-malodor. Malodor generation is multi-factorial, only a small change of salivary proteins can generate VSCs, changes may be so small that they are easily missed when proteins are analyzed as a whole, or changes in salivary proteins may be compensated by newly secreted saliva.

In this study, subjects with any systemic diseases were excluded to avoid the possible effect on GC analyses and salivary analyses. Those with insufficient salivary flow were also excluded in order to complete electrophoretic analyses of saliva. Because of these limitations, careful generalization is necessary when applying our results to all the patients with oral malodor.

Acknowledgments

We are grateful to Dr. F. A. C. Wright, a visiting professor at Tokyo Medical and Dental University, for suggestions and advice.

References